### Less Weird Quaternions

I’ve always been frustrated by how mysterious quaternions are. They arise from weird equations that you just have to memorize, and are difficult to debug because as soon as you deviate too far from the identity quaternion, the numbers are really hard to interpret. Most people implement quaternions once and then treat them as a black box forever after. So I had put quaternions off as one of those weird complicated 4D mathematical constructs that mathematicians sometimes invent that magically works as long as I don’t mess with it.

That is until recently, when I came across the paper Imaginary Numbers are not Real – the Geometric Algebra of Spacetime which arrives at quaternions using only 3D math, using no imaginary numbers, and in a form that generalizes to 2D, 3D, 4D or any other number of dimensions. (and quaternions just happen to be a special case of 3D rotations)

In the last couple weeks I finally took the time to work through the math enough that I am convinced that this is a much better way to think of quaternions. So in this blog post I will explain…

• … how quaternions are 3D constructs. The 4D interpretation just adds confusion
• … how you don’t need imaginary numbers to arrive at quaternions. The term $\sqrt{-1}$ will not come up (other than to point out the places where other people need it, and why we don’t need it)
• … where the double cover of quaternions comes from, as well as how you can remove it if you want to (which makes quaternions a whole lot less weird)
• … why you actually want to keep the double cover, because the double cover is what makes quaternion interpolation great

Unfortunately I will have to teach you a whole new algebra to get there: Geometric Algebra. I only know the basics though, so I’ll stick to those and keep it simple. You will see that the geometric algebra interpretation of quaternions is much simpler than the 4D interpretation, so I can promise you that it’s worth spending a little bit of time to learn the basics of Geometric Algebra to get to the good stuff.