### I Wrote a Faster Sorting Algorithm

These days it’s a pretty bold claim if you say that you invented a sorting algorithm that’s 30% faster than state of the art. Unfortunately I have to make a far bolder claim: I wrote a sorting algorithm that’s twice as fast as std::sort for many inputs. And except when I specifically construct cases that hit my worst case, it is never slower than std::sort. (and even when I hit those worst cases, I detect them and automatically fall back to std::sort)

Why is that an unfortunate claim? Because I’ll probably have a hard time convincing you that I did speed up sorting by a factor of two. But this should turn out to be quite a lengthy blog post, and all the code is open source for you to try out on whatever your domain is. So I might either convince you with lots of arguments and measurements, or you can just try the algorithm yourself.

Following up from my last blog post, this is of course a version of radix sort. Meaning its complexity is lower than O(n log n). I made two contributions:

1. I optimized the inner loop of in-place radix sort. I started off with the Wikipedia implementation of American Flag Sort and made some non-obvious improvements. This makes radix sort much faster than std::sort, even for a relatively small collections. (starting at 128 elements)
2. I generalized in-place radix sort to work on arbitrary sized ints, floats, tuples, structs, vectors, arrays, strings etc. I can sort anything that is reachable with random access operators like operator[] or std::get. If you have custom structs, you just have to provide a function that can extract the key that you want to sort on. This is a trivial function which is less complicated than the comparison operator that you would have to write for std::sort.

If you just want to try the algorithm, jump ahead to the section “Source Code and Usage.”

## O(n) Sorting

To start off with, I will explain how you can build a sorting algorithm that’s O(n). If you have read my last blog post, you can skip this section. If you haven’t, read on:

If you are like me a month ago, you knew for sure that it’s proven that the fastest possible sorting algorithm has to be O(n log n). There are mathematical proofs that you can’t make anything faster. I believed that until I watched this lecture from the “Introduction to Algorithms” class on MIT Open Course Ware. There the professor explains that sorting has to be O(n log n) when all you can do is compare items. But if you’re allowed to do more operations than just comparisons, you can make sorting algorithms faster.

I’ll show an example using the counting sort algorithm:

```template<typename It, typename OutIt, typename ExtractKey>
void counting_sort(It begin, It end, OutIt out_begin, ExtractKey && extract_key)
{
size_t counts[256] = {};
for (It it = begin; it != end; ++it)
{
++counts[extract_key(*it)];
}
size_t total = 0;
for (size_t & count : counts)
{
size_t old_count = count;
count = total;
total += old_count;
}
for (; begin != end; ++begin)
{
std::uint8_t key = extract_key(*begin);
out_begin[counts[key]++] = std::move(*begin);
}
}
```

This version of the algorithm can only sort unsigned chars. Or rather it can only sort types that can provide a sort key that’s an unsigned char. Otherwise we would index out of range in the first loop. Let me explain how the algorithm works:

We have three arrays and three loops. We have the input array, the output array, and a counting array. In the first loop we fill the counting array by iterating over the input array, counting how often each element shows up.

The second loop turns the counting array into a prefix sum of the counts. So let’s say the array didn’t have 256 entries, but only 8 entries. And let’s say the numbers come up this often:

 index 0 1 2 3 4 5 6 7 count 0 2 1 0 5 1 0 0 prefix sum 0 0 2 3 3 8 9 9

So in this case there were nine elements in total. The number 1 showed up twice, the number 2 showed up once, the number 4 showed up five times and the number 5 showed up once. So maybe the input sequence was { 4, 4, 2, 4, 1, 1, 4, 5, 4 }.

The final loop now goes over the initial array again and uses the key to look up into the prefix sum array. And lo and behold, that array tells us the final position where we need to store the integer. So when we iterate over that sequence, the 4 goes to position 3, because that’s the value that the prefix sum array tells us. We then increment the value in the array so that the next 4 goes to position 4. The number 2 will go to position 2, the next 4 goes to position 5 (because we incremented the value in the prefix sum array twice already) etc. I recommend that you walk through this once manually to get a feeling for it. The final result of this should be { 1, 1, 2, 4, 4, 4, 4, 4, 5 }.

And just like that we have a sorted array. The prefix sum told us where we have to store everything, and we were able to compute that in linear time.

Also notice how this works on any type, not just on integers. All you have to do is provide the extract_key() function for your type. In the last loop we move the type that you provided, not the key returned from that function. So this can be any custom struct. For example you could sort strings by length. Just use the size() function in extract_key, and clamp the length to at most 255. You could write a modified version of counting_sort that tells you where the position of the last partition is, so that you can then sort all long strings using std::sort. (which should be a small subset of all your strings so that the second pass on those strings should be fast)

## In-Place Linear Time Sort

The above algorithm stores the sorted elements in a separate array. But it doesn’t take much to get an in-place sorting algorithm for unsigned chars: One thing we could try is that instead of moving the elements, we swap them.

The most obvious problem that we run into with that is that when we swap the first element out of the first spot, the new element probably doesn’t want to be in the first spot. It might want to be at position 10 instead. The solution for that is simple: Keep on swapping the first element until we find an element that actually wants to be in the first spot. Only when that has happened do we move on to the second item in the array.

The second problem that we then run into is that we’ll find a lot of partitions that are already sorted. We may not know however that those are already sorted. Imagine if we have the number 3 two times and it wants to be in positions six and seven. And lets say that as part of swapping the first element into place, we swap the first 3 to slot six, and the second 3 to slot seven. Now these are sorted and we don’t need to do anything with them any more. But when we advance on from the first element, we will at some point come across the 3 in slot six. And we’ll swap it to spot eight, because that’s the next spot that a 3 would go to. Then we find the next 3 and swap it to spot nine. Then we find the first 3 again and swap it to spot ten etc. This keeps going until we index out of bounds and crash.

The solution for the second problem is to keep a copy of the initial prefix array around so that we can tell when a partition is finished. Then we can skip over those partitions when advancing through the array.

With those two changes we have an in-place sorting algorithm that sorts unsigned chars. This is the American Flag Sort algorithm as described on Wikipedia.

Radix sort takes the above algorithm, and generalizes it to integers that don’t fit into a single unsigned char. The in-place version actually uses a fairly simple trick: Sort one byte at a time. First sort on the highest byte. That will split the input into 256 partitions. Now recursively sort within each of those partitions using the next byte. Keep doing that until you run out of bytes.

If you do the math on that you will find that for a four byte integer  you get 256^3 recursive calls: We subdivide into 256 partitions then recurse, subdivide each of those into 256 partitions and recurse again and then subdivide each of the smaller partitions into 256 partitions again and recurse a final time. If we actually did all of those recursions this would be a very slow algorithm. The way to get around that problem is to stop recursing when the number of items in a partition is less than some magic number, and to use std::sort within that sub-partition instead. In my case I stop recursing when a partition is less than 128 elements in size. When I have split an array into partitions that have less than that many elements, I call std::sort within these partitions.

If you’re curious: The reason why the threshold is at 128 is that I’m splitting the input into 256 partitions. If the number of partitions is k, then the complexity of sorting on a single byte is O(n+k). The point where radix sort gets faster than std::sort is when the loop that depends on n starts to dominate over the loop that depends on k. In my implementation that’s somewhere around 0.5k. It’s not easy to move it much lower than that. (I have some ideas, but nothing has worked yet)

It should be clear that the algorithm described in the last section works for unsigned integers of any size. But it also works for collections of unsigned integers, (including pairs and tuples) and strings. Just sort by the first element, then by the next, then by the next etc. until the partition sizes are small enough. (as a matter of fact the paper that Wikipedia names as the source for its American Flag Sort article intended the algorithm as a sorting algorithm for strings)

But it’s straightforward to generalize this to work on signed integers: Just shift all the values up into the range of the unsigned integer of the same size. Meaning for an int16_t, just cast to uint16_t and add 32768.

Michael Herf has also discovered a good way to generalize this to floating point numbers: Reinterpret cast the float to a uint32, then flip every bit if the float was negative, but flip only the sign bit if the float was positive. The same trick works for doubles and uint64s. Michael Herf explains why this works in the linked piece, but the short version of it is this: Positive floating point numbers already sort correctly if we just reinterpret cast them to a uint32. The exponent comes before the mantissa, so we would sort by the exponent first, then by the mantissa. Everything works out. Negative floating point numbers however would sort the wrong way. Flipping all the bits on them fixes that. The final remaining problem is that positive floating point numbers need to sort as bigger than negative numbers, and the easiest way to do that is to flip the sign bit since it’s the most significant bit.

Of the fundamental types that leaves only booleans and the various char types. Chars can just be reinterpret_casted to the unsigned types of the same size. Booleans could also be turned into a unsigned char, but we can also use a custom, more efficient algorithm for booleans: Just use std::partition instead of the normal sorting algorithm. And if we need to recurse because we’re sorting on more than one key, we can recurse into each of the partitions.

And just like that we have generalized in-place radix sort to all types. Now all it takes is a bunch of template magic to make the code do the right thing for each case. I’ll spare you the details of that. It wasn’t fun.

## Optimizing the Inner Loop

The brief recap of the sorting algorithm for sorting one byte is:

1. Count elements and build the prefix sum that tells us where to put the elements
2. Swap the first element into place until we find an item that wants to be in the first position (according to the prefix sum)
3. Repeat step 2 for all positions

I have implemented this sorting algorithm using Timo Bingmann’s Sound of Sorting. Here is a what it looks (and sounds) like:

As you can see from the video, the algorithm spends most of its time on the first couple elements. Sometimes the array is mostly sorted by the time that the algorithm advances forward from the first item. What you can’t see in the video is the prefix sum array that’s built on the side. Visualizing that would make the algorithm more understandable, (it would make clear how the algorithm can know the final position of elements to swap them directly there) but I haven’t done the work of visualizing that.

If we want to sort multiple bytes we recurse into each of the 256 partitions and do a sort within those using the next byte. But that’s not the slow part of this. The slow part is step 2 and step 3.

If you profile this you will find that this is spending all of its time on the swapping. At first I thought that that was because of cache misses. Usually when the line of assembly that’s taking a lot of time is dereferencing a pointer, that’s a cache miss. I’ll explain what the real problem was further down, but even though my intuition was wrong it drove me towards a good speed up: If we have a cache miss on the first element, why not try swapping the second element into place while waiting for the cache miss on the first one?

I already have to keep information about which elements are done swapping, so I can skip over those. So what I do is that I Iterate over all elements that have not yet been swapped into place, and I swap them into place. In one pass over the array, this will swap at least half of all elements into place. To see why, let’s think how this works in this list:  { 4, 3, 1, 2 }: We look at the first element, the 4, and swap it with the 2 at the end, giving us this list: { 2, 3, 1, 4 }, then we look at the second element, the 3, and swap it with the 1, giving us this list: { 2, 1, 3, 4 } then we have iterated half-way through the list and find that all the remaining elements are sorted, (we do this by checking that the offset stored in the prefix sum array is the same as the initial offset of the next partition) so we’re done, but our list is not sorted. The solution for that is to say that when we get to the end of the list, we just start over from the beginning, swapping all unsorted elements into place. In that case we only need to swap the 2 into place to get { 1, 2, 3, 4 } at which point we know that all partitions are sorted and we can stop.

In Sound of Sorting that looks like this:

## Implementation Details

This is what the above algorithm looks like in code:

```struct PartitionInfo
{
PartitionInfo()
: count(0)
{
}

union
{
size_t count;
size_t offset;
};
size_t next_offset;
};

template<typename It, typename ExtractKey>
void ska_byte_sort(It begin, It end, ExtractKey & extract_key)
{
PartitionInfo partitions[256];
for (It it = begin; it != end; ++it)
{
++partitions[extract_key(*it)].count;
}
uint8_t remaining_partitions[256];
size_t total = 0;
int num_partitions = 0;
for (int i = 0; i < 256; ++i)
{
size_t count = partitions[i].count;
if (count)
{
partitions[i].offset = total;
total += count;
remaining_partitions[num_partitions] = i;
++num_partitions;
}
partitions[i].next_offset = total;
}
for (uint8_t * last_remaining = remaining_partitions + num_partitions, * end_partition = remaining_partitions + 1; last_remaining > end_partition;)
{
last_remaining = custom_std_partition(remaining_partitions, last_remaining, [&](uint8_t partition)
{
size_t & begin_offset = partitions[partition].offset;
size_t & end_offset = partitions[partition].next_offset;
if (begin_offset == end_offset)
return false;

unroll_loop_four_times(begin + begin_offset, end_offset - begin_offset, [partitions = partitions, begin, &extract_key, sort_data](It it)
{
uint8_t this_partition = extract_key(*it);
size_t offset = partitions[this_partition].offset++;
std::iter_swap(it, begin + offset);
});
return begin_offset != end_offset;
});
}
}
```

The algorithm starts off similar to counting sort above: I count how many items fall into each partition. But I changed the second loop: In the second loop I build an array of indices into all the partitions that have at least one element in them. I need this because I need some way to keep track of all the partitions that have not been finished yet. Also I store the end index for each partition in the next_offset variable. That will allow me to check whether a partition is finished sorting.

The third loop is much more complicated than counting sort. It’s three nested loops, and only the outermost is a normal for loop:

The outer loop iterates over all of the remaining unsorted partitions. It stops when there is only one unsorted partition remaining. That last partition does not need to be sorted if all other partitions are already sorted. This is an important optimization because the case where all elements fall into only one partition is quite common: When sorting four byte integers, if all integers are small, then in the first call to this function, which sorts on the highest byte, all of the keys will have the same value and will fall into one partition. In that case this algorithm will immediately recurse to the next byte.

The middle loop uses std::partition to remove finished partitions from the list of remaining partitions. I use a custom version of std::partition because std::partition will unroll its internal loop, and I do not want that. I need the innermost loop to be unrolled instead. But the behavior of custom_std_partition is identical to that of std::partition. What this loop means is that if the items fall into partitions of different sizes, say for the input sequence { 3, 3, 3, 3, 2, 5, 1, 4, 5, 5, 3, 3, 5, 3, 3 } where the partitions for 3 and 5 are larger than the other partitions, this will very quickly finish the partitions for 1, 2 and 4, and then after that the outer loop and inner loop only have to iterate over the partitions for 3 and 5. You might think that I could use std::remove_if here instead of std::partition, but I need this to be non-destructive, because I will need the same list of partitions when making recursive calls. (not shown in this code listing)

The innermost loop finally swaps elements. It just iterates over all remaining unsorted elements in a partition and swaps them into their final position. This would be a normal for loop, except I need this loop unrolled to get fast speeds. So I wrote a function called “unroll_loop_four_times” that takes an iterator and a loop count and then unrolls the loop.

## Why this is Faster

This new algorithm was immediately much faster than American Flag Sort. Which made sense because I thought I had tricked the cache misses. But as soon as I profiled this I noticed that this new sorting algorithm actually had slightly more cache misses. It also had more branch mispredictions. It also executed more instructions. But somehow it took less time. This was quite puzzling so I profiled it whichever way I could. For example I ran it in Valgrind to see what Valgrind thought should be happening. In Valgrind this new algorithm was actually slower than American Flag Sort. That makes sense: Valgrind is just a simulator, so something that executes more instructions, has slightly more cache misses and slightly more branch mispredictions would be slower. But why would it be faster running on real hardware?

It took me more than a day of staring at profiling numbers before I realized why this was faster: It has better instruction level parallelism. You couldn’t have invented this algorithm on old computers because it would have been slower on old computers. The big problem with American Flag Sort is that it has to wait for the current swap to finish before it can start on the next swap. It doesn’t matter that there is no cache-miss: Modern CPUs could execute several swaps at once if only they didn’t have to wait for the previous one to finish. Unrolling the inner loop also helps to ensure this. Modern CPUs are amazing, so they could actually run several loops in parallel even without loop unrolling, but the loop unrolling helps.

The Linux perf command has a metric called “instructions per cycle” which measures instruction level parallelism. In American Flag Sort my CPU achieves 1.61 instructions per cycle. In this new sorting algorithm it achieves 2.24 instructions per cycle. It doesn’t matter if you have to do a few instructions more, if you can do 40% more at a time.

And the thing about cache misses and branch mispredictions turned out to be a red herring: The numbers for those are actually very low for both algorithms. So the slight increase that I saw was a slight increase to a low number. Since there are only 256 possible insertion points, chances are that a good portion of them are always going to be in the cache. And for many real world inputs the number of possible insertion points will actually be much lower. For example when sorting strings, you usually get less than thirty because we simply don’t use that many different characters.

All that being said, for small collections American Flag Sort is faster. The instruction level parallelism really seems to kick in at collections of more than a thousand elements. So my final sort algorithm actually looks at the number of elements in the collection, and if it’s less than 128 I call std::sort, if it’s less than 1024 I call American Flag Sort, and if it’s more than that I run my new sorting algorithm.

std::sort is actually a similar combination, mixing quick sort, insertion sort and heap sort, so in a sense those are also part of my algorithm. If I tried hard enough, I could construct an input sequence that actually uses all of these sorting algorithms. That input sequence would be my very worst case: I would have to trigger the worst case behavior of radix sort so that my algorithm falls back to std::sort, and then I would also have to trigger the worst case behavior of quick sort so that std::sort falls back to heap sort. So let’s talk about worst cases and best cases.

## Best Case and Worst Case

The best case for my implementation of radix sort is if the inputs fit in few partitions. For example if I have a thousand items and they all fall into only three partitions, (say I just have the number 1 a hundred times, the number 2 four hundred times, and the number 3 five hundred times) then my outer loops do very little and my inner loop can swap everything into place in nice long uninterrupted runs.

My other best case is on already sorted sequences: In that case I iterate over the data exactly twice, once to look at each item, and once to swap each item with itself.

The worst case for my implementation can only be reached when sorting variable sized data, like strings. For fixed size keys like integers or floats, I don’t think there is a really bad case for my algorithm. One way to construct the worst case is to sort the strings “a”, “ab”, “abc”, “abcd”, “abcde”, “abcdef” etc. Since radix sort looks at one byte at a time, and that byte only allows it to split off one item, this would take O(n^2) time. My implementation detects this by recording how many recursive calls there were. If there are too many, I fall back to std::sort. Depending on your implementation of quick sort, this could also be the worst case for quick sort, in which case std::sort falls back to heap sort. I debugged this briefly and it seemed like std::sort did not fall back to heap sort for my test case. The reason for that is that my test case was sorted data and std::sort seems to use the median-of-three rule for pivot selection, which selects a good pivot on already sorted sequences. Knowing that, it’s probably possible to create sequences that hit the worst case both for my algorithm and for the quick sort used in std::sort, in which case the algorithm would fall back to heap sort. But I haven’t attempted to construct such a sequence.

I don’t know how common this case is in the real world, but one trick I took from the boost implementation of radix sort is that I skip over common prefixes. So if you’re sorting log messages and you have a lot of messages that start with “warning:” or “error:” then my implementation of radix sort would first sort those into separate partitions, and then within each of those partitions it would skip over the common prefix and continue sorting at the first differing character. That behavior should help reduce how often we hit the worst case.

Currently I fall back to std::sort if my code has to recurse more than sixteen times. I picked that number because that was the first power of two for which the worst case detection did not trigger when sorting some log files on my computer.

## Algorithm Summary and Naming

The sorting algorithm that I provide as a library is called “Ska Sort”. Because I’m not going to come up with new algorithms very often in my lifetime, so might as well put my name on one when I do. The improved algorithm for sorting bytes that I described above in the sections “Optimizing the Inner Loop” and “Implementation Details” is only a small part of that. That algorithm is called “Ska Byte Sort”.

In summary, Ska Sort:

• Is an in-place radix sort algorithm
• Sorts one byte at a time (into 256 partitions)
• Falls back to std::sort if a collection contains less than some threshold of items (currently 128)
• Uses the inner loop of American Flag Sort if a collection contains less than a larger threshold of items (currently 1024)
• Uses Ska Byte Sort if the collection is larger than that
• Calls itself recursively on each of the 256 partitions using the next byte as the sort key
• Falls back to std::sort if it recurses too many times (currently 16 times)
• Uses std::partition to sort booleans
• Automatically converts signed integers, floats and char types to the correct unsigned integer type
• Automatically deals with pairs, tuples, strings, vectors and arrays by sorting one element at a time
• Skips over common prefixes of collections. (for example when sorting strings)
• Provides two customization points to extract the sort key from an object: A function object that can be passed to the algorithm, or a function called to_radix_sort_key() that can be placed in the namespace of your type

So Ska Sort is a complicated algorithm. Certainly more complicated than a simple quick sort. One of the reasons for this is that in Ska Sort, I have a lot more information about the types that I’m sorting. In comparison based sorting algorithms all I have is a comparison function that returns a bool. In Ska Sort I can know that “for this collection, I first have to sort on a boolean, then on a float” and I can write custom code for both of those cases. In fact I often need custom code: The code that sorts tuples has to be different from the code that sorts strings. Sure, they have the same inner loop, but they both need to do different work to get to that inner loop. In comparison based sorting you get the same code for all types.

## Optimizations I Didn’t Do

If you’ve got enough time on your hands that you clicked on the pieces I linked above, you will find that there are two optimizations that are considered important in my sources that I didn’t do.

The first is that the piece that talks about sorting floating point numbers sorts 11 bits at a time, instead of one byte at a time. Meaning it subdivides the range into 2048 partitions instead of 256 partitions. The benefit of this is that you can sort a four byte integer (or a four byte float) in three passes instead of four passes. I tried this in my last blog post and found it to only be faster for a few cases. In most cases it was slower than sorting one byte at a time. It’s probably worth trying that trick again for in-place radix sort, but I didn’t do that.

The second is that the American Flag Sort paper talks about managing recursions manually. Instead of making recursive calls, they keep a stack of all the partitions that still need to be sorted. Then they loop until that stack is empty. I didn’t attempt this optimization because my code is already far too complex. This optimization is easier to do when you only have to sort strings because you always use the same function to extract the current byte. But if you can sort ints, floats, tuples, vectors, strings and more, this is complicated.

## Performance

Finally we get to how fast this algorithm actually is. Since my last blog post I’ve changed how I calculate these numbers. In my last blog post I actually made a big mistake: I measured how long it takes to set up my test data and to then sort it. The problem with that is that the set up can actually be a significant portion of the time. So this time I also measure the set up separately and subtract that time from the measurements so that I’m left with only the time it takes to actually sort the data. With that let’s get to our first measurement: Sorting integers: (generated using std::uniform_int_distribution)

This graph shows how long it takes to sort various numbers of items. I didn’t mention ska_sort_copy before, but it’s essentially the algorithm from my last blog post, except that I changed it so that it falls back to ska_sort instead of falling back to std::sort. (ska_sort may still decide to fall back to std::sort of course)

One problem I have with this graph that even though I made the scale logarithmic, it’s still very difficult to see what’s going on. Last time I added another line at the bottom that showed the relative scale, but this time I have a better approach. Instead of a logarithmic scale, I can divide the total time by the number of items, so that I get the time that the sort algorithm spends per item:

With this visualization, we can see much more clearly what’s going on. All pictures below use “nanoseconds per item” as scale, like in this graph. Let’s analyze this graph a little:

For the first couple items we see that the lines are essentially the same. That’s because for less than 128 elements, I fall back to std::sort. So you would expect all of the lines to be exactly the same. Any difference in that area is measurement noise.

Then past that we see that std::sort is exactly a O(n log n) sorting algorithm. It goes up linearly when we divide the time by the number of items, which is exactly what you’d expect for O(n log n). It’s actually impressive how it forms an exactly straight line once we’re past a small number of items. ska_sort_copy is truly an O(n) sorting algorithm: The cost per item stays mostly constant as the total number of items increases. But ska_sort is… more complicated.

Those waves that we’re seeing in the ska_sort line have to do with the number of recursive calls: ska_sort is fastest when the number of items is large. That’s why the line starts off as decreasing. But then at some point we have to recurse into a bunch of partitions that are just over 128 items in size, which is slow. Then those partitions grow as the number of items increase and the algorithm is faster again, until we get to a point where the partitions are over 128 elements in size again, and we need to add another recursive step. One way to visualize this is to look at the graph of sorting a collection of int8_t:

As you can see the cost per item goes down dramatically at the beginning. Every time that the algorithm has to recurse into other partitions, we see that initial part of the curve overlaid, giving us the waves of the graph for sorting ints.

One point I made above is that ska_sort is fastest when there are few partitions to sort elements into. So let’s see what happens when we use a std::geometric_distribution instead of a std::uniform_int_distribution:

This graph is sorting four byte ints again, so you would expect to see the same “waves” that we saw in the uniformly distributed ints. I’m using a std::geometric_distribution with 0.001 as the constructor argument. Which means it generates numbers from 0 to roughly 18000, but most numbers will be close to zero. (in theory it can generate numbers that are much bigger, but 18882 is the biggest number I measured when generating the above data) And since most numbers are close to zero, we will see few recursions and because of that we see few waves, making this many times faster than std::sort.

Btw that bump at the beginning is surprising to me. For all other data that I could find, ska_sort starts to beat std::sort at 128 items. Here it seems like ska_sort only starts to win later. I don’t know why that is. I might investigate it at a different point, but I don’t want to change the threshold because this is a good number for all other data. Changing the threshold would move all other lines up by a little. Also since we’re sorting few items there, the difference in absolute terms is not that big: 15.8 microseconds to 16.7 microseconds for 128 items, and 32.3 microseconds to 32.9 microseconds for 256 items.

Let’s look at some more use cases. Here is my “real world” use case that I talked about in the last blog post, where I had to sort enemies in a game by distance to the player. But I wanted all enemies that are currently in combat to come first, sorted by distance, followed by all enemies that are not in combat, also sorted by distance. So I sort by a std::pair:

This turned out to be the same graph as sorting ints, except every line is shifted up by a bit. Which I guess I should have expected. But it’s good to see that the conversion trick that I have to do for floats and the splitting I have to do for pairs does not add significant overhead. A more interesting graph is the one for sorting int64s:

This is the point where ska_sort_copy is sometimes slower than ska_sort. I actually decided to lower the threshold where ska_sort_copy falls back to ska_sort: It will now only do the copying radix sort when it has to do less than eight iterations over the input data. Meaning I have changed the code, so that for int64s ska_sort_copy actually just calls ska_sort. Based on the above graph you might argue that it should still do the copying radix sort, but here is a measurement of sorting an 128 byte struct that has an int64 as a sort key:

As the structs get larger, ska_sort_copy gets slower. Because of this I decided to make ska_sort_copy fall back to ska_sort for sort keys of this size.

One other thing to notice from the above graph is that it looks like std::sort and ska_sort get closer. So does ska_sort ever become slower? It doesn’t look like it. Here’s what it looks like when I sort a 1024 byte struct:

Once again this is a very interesting graph. I wish I could spend time on investigating where that large gap at the end comes from. It’s not measurement noise. It’s reproducible. The way I build these graphs is that I run Google Benchmark thirty times to reduce the chance of random variation.

Talking about large data, in my last blog post my worst case was sorting a struct that has a 256 byte sort key. Which in this case means using a std::array as a sort key. This was very slow on copying radix sort because we actually have to do 256 passes over the data. In-place radix sort only has to look at enough bytes until it’s able to tell two pieces of data apart, so it might be faster. And looking at benchmarks, it seems like it is:

ska_sort_copy will fall back to ska_sort for this input, so its graph will look identical. So I fixed the worst case from my last blog post. One thing that I couldn’t profile in my last blog post was sorting of strings, because ska_sort_copy simply can not sort strings because it can not sort variable sized data.

So let’s look at what happens when I’m sorting strings:

The way I build the input data here is that I take between one and three random words from my words file and concatenate them. Once again I am very happy to see how well my algorithm does. But this was to be expected: It was already known that radix sort is great for sorting strings.

But sorting strings is also when I can hit my worst case. In theory you might get cases where you have to do many passes over the data, because there simply are a lot of bytes in the input data and a lot of them are similar. So I tried what happens when I sort strings of different length, concatenating between zero and ten words from my words file:

What we see here is that ska_sort seems to become a O(n log n) algorithm when sorting millions of long strings. However it doesn’t get slower than std::sort. My best guess for the curve going up like that is that ska_sort has to do a lot of recursions on this data. It doesn’t do enough recursions to trigger my worst case detection, but those recursions are still expensive because they require one more pass over the data.

One thing I tried was lowering my recursion limit to eight, in which case I do hit my worst case detection starting at a million items. But the graph looks essentially unchanged in that case. The reason is that it’s a false positive: I didn’t actually hit my worst case. The sorting algorithm still succeeded at splitting the data into many smaller partitions, so when I fall back to std::sort, it has a much easier time than it would have had sorting the whole range.

Finally, here is what it looks like when I sort containers that are slightly more complicated than strings:

For this I generate vectors with between 0 and 20 ints in them. So I’m sorting a vector of vectors. That spike at the end is very interesting. My detection for too many recursive calls does not trigger here, so I’m not sure why sorting gets so much more expensive. Maybe my CPU just doesn’t like dealing with this much data. But I’m happy to report that ska_sort is faster than std::sort throughout, like in all other graphs.

Since ska_sort seems to always be faster, I also generated input data that intentionally triggers the worst case for ska_sort. The below graph hits the worst case immediately starting at 128 elements. But ska_sort detects that and falls back to std::sort:

For this I’m sorting random combinations of the vectors {},  { 0 }, { 0, 1 }, { 0, 1, 2 }, … { 0, 1, 2, … , 126, 127 }. Since each element only tells my algorithm how to split off 1/128th of the input data, it would have to recurse 128 times. But at the sixteenth recursion ska_sort gives up and falls back to std::sort. In the above graph you see how much overhead that is. The overhead is bigger than I like, especially for large collections, but for smaller collections it seems to be very low. I’m not happy that this overhead exists, but I’m happy that ska_sort detects the worst case and at least doesn’t go O(n^2).

## Problems

Ska_sort isn’t perfect and it has problems. I do believe that it will be faster than std::sort for nearly all data, and it should almost always be preferred over std::sort.

The biggest problem it has is the complexity of the code. Especially the template magic to recursively sort on consecutive bytes. So for example currently when sorting on a std::pair<int, int> this will instantiate the sorting algorithm eight times, because there will be eight different functions for extracting a byte out of this data. I can think of ways to reduce that number, but they might be associated with runtime overhead. This needs more investigation, but the complexity of the code is also making these kinds of changes difficult. For now you can get slow compile times with this if your sort key is complex. The easiest way to get around that is to try to use a simpler sort key.

Another problem is that I’m not sure what to do for data that I can’t sort. For example this algorithm can not sort a vector of std::sets. The reason is that std::set does not have random access operators, and I need random access when sorting on one element at a time. I could write code that allows me to sort std::sets by using std::advance on iterators, but it might be slow. Alternatively I could also fall back to std::sort. Right now I do neither: I simply give a compiler error. The reason for that is that I provide a customization point, a function called to_radix_sort_key(), that allows you to write custom code to turn your structs into sortable data. If I did an automatic fallback whenever I can’t sort something, using that customization point would be more annoying: Right now you get an error message when you need to provide it, and when you have provided it, the error goes away. If I fall back to std::sort for data that I can’t sort, your only feedback for would be that sorting is slightly slower. You would have to either profile this and compare it to std::sort, or you would have to step through the sorting function to be sure that it actually uses your implementation of to_radix_sort_key(). So for now I decided on giving an error message when I can’t sort a type. And then you can decide whether you want to implement to_radix_sort_key() or whether you want to use std::sort.

Another problem is that right now there can only be one sorting behavior per type. You have to provide me with a sort key, and if you provide me with an integer, I will sort your data in increasing order. If you wanted it in decreasing order, there is currently no easy interface to do that. For integers you could solve this by flipping the sign in your key function, so this might not be too bad. But it gets more difficult for strings: If you provide me a string then I will sort the string, case sensitive, in increasing order. There is currently no way to do a case-insensitive sort for strings. (or maybe you want number aware sorting so that “bar100” comes after “bar99”, also can’t do that right now) I think this is a solvable problem, I just haven’t done the work yet. Since the interface of this sorting algorithm works differently from existing sorting algorithms, I have to invent new customization points.

## Source Code and Usage

The interface works slightly differently from other sorting algorithms. Instead of providing a comparison function, you provide a function which returns the sort key that the sorting algorithm uses to sort your data. For example let’s say you have a vector of enemies, and you want to sort them by distance to the player. But you want all enemies that are in combat with the player to come first, sorted by distance, and then all enemies that are not in combat, also sorted by distance. The way to do that in a classic sorting algorithm would be like this:

```std::sort(enemies.begin(), enemies.end(), [](const Enemy & lhs, const Enemy & rhs)
{
return std::make_tuple(!is_in_combat(lhs), distance_to_player(lhs))
< std::make_tuple(!is_in_combat(rhs), distance_to_player(rhs));
});
```

In ska_sort, you would do this instead:

```ska_sort(enemies.begin(), enemies.end(), [](const Enemey & enemy)
{
return std::make_tuple(!is_in_combat(enemy), distance_to_player(enemy));
});
```

As you can see the transformation is fairly straightforward. Similarly let’s say you have a bunch of people and you want to sort them by last name, then first name. You could do this:

```ska_sort(contacts.begin(), contacts.end(), [](const Contact & c)
{
return std::tie(c.last_name, c.first_name);
});
```

It is important that I use std::tie here, because presumably last_name and first_name are strings, and you don’t want to copy those. std::tie will capture them by reference.

Oh and of course if you just have a vector of simple types, you can just sort them directly:

```
ska_sort(durations.begin(), durations.end());

```

In this I assume that “durations” is a vector of doubles, and you might want to sort them to find the median, 90th percentile, 99th percentile etc. Since ska_sort can already sort doubles, no custom code is required.

There is one final case and that is when sorting a collection of custom types. ska_sort only takes a single customization function, but what do you do if you have a custom type that’s nested? In that case my algorithm would have to recurse into the top-level-type and would then come across a type that it doesn’t understand. When this happens you will get an error message about a missing overload for to_radix_sort_key(). What you have to do is provide an implementation of the function to_radix_sort_key() that can be found using ADL for your custom type:

```struct CustomInt
{
int i;
};
{
return i.i;
}

//... later somewhere

std::vector<std::vector<CustomInt>> collections = ...;
ska_sort(collections.begin(), collections.end());
```

In this case ska_sort will call to_radix_sort_key() for the nested CustomInts. You have to do this because there is no efficient way to provide a custom extract_key function at the top level. (at the top level you would have to convert the std::vector<CustomInt> to a std::vector<int>, and that requires a copy)

Finally I also provide a copying sort function, ska_sort_copy, which will be much faster for small keys. To use it you need to provide a second buffer that’s the same size as the input buffer. Then the return value of the function will tell you whether the final sorted sequence is in the second buffer (the function returns true) or in the first buffer (the function return false).

```std::vector<int> temp_buffer(to_sort.size());
if (ska_sort_copy(to_sort.begin(), to_sort.end(), temp_buffer.begin()))
to_sort.swap(temp_buffer);
```

In this code I allocate a temp buffer, and if the function tells me that the result ended up in the temp buffer, I swap it with the input buffer. Depending on your use case you might not have to do a swap. And to make this fast you wouldn’t want to allocate a temp buffer just for the sorting. You’d want to re-use that buffer.

## FAQ

I’ve talked to a few people about this, and the usual questions I get are all related to people not believing that this is actually faster.

Q: Isn’t Radix Sort O(n+m) where m is large so that it’s actually slower than a O(n log n) algorithm? (or alternatively: Isn’t radix sort O(n*m) where m is larger than log n?)

A: Yes, radix sort has large constant factors, but in my benchmarks it starts to beat std::sort at 128 elements. And if you have a large collection, say a thousand elements, radix sort is a very clear winner.

Q: Doesn’t Radix Sort degrade to a O(n log n) algorithm? (or alternatively: Isn’t the worst case of Radix Sort O(n log n) or maybe even O(n^2)?)

A: In a sense Radix Sort has to do log(n) passes over the data. When sorting an int16, you have to do two passes over the data. When sorting an int32, you have to do four passes over the data. When sorting an int64 you have to do eight passes etc. However this is not O(n log n) because this is a constant factor that’s independent of the number of elements. If I sort a thousand int32s, I have to do four passes over that data. If I sort a million int32s, I still have to do four passes over that data. The amount of work grows linearly. And if the ints are all different in the first byte, I don’t even have to do the second, third or fourth pass. I only have to do enough passes until I can tell them all apart.

So the worst case for radix sort is O(n*b) where b is the number of bytes that I have to read until I can tell all the elements apart. If you make me sort a lot of long strings, then the number of bytes can be quite large and radix sort may be slow. That is the “worst case” graph above. If you have data where radix sort is slower than std::sort (something that I couldn’t find except when intentionally creating bad data) please let me know. I would be interested to see if we can find some optimizations for those cases. When I tried to build more plausible strings, ska_sort was always clearly faster.

And if you’re sorting something fixed size, like floats, then there simply is no accidental worst case. You are limited by the number of bytes and you will do at most four passes over the data.

Q: If those performance graphs were true, we’d be radix sorting everything.

A: They are true. Not sure what to tell you. The code is on github, so try it for yourself. And yes, I do expect that we will be radix sorting everything. I honestly don’t know why everybody settled on Quick Sort back in the day.

## Future Work

There are a couple obvious improvements that I may make to the algorithm. The algorithm is currently in a good state, but if I ever feel like working on this again, here are three things that I might do:

As I said in the problems section, there is currently no way to sort strings case-insensitive. Adding that specific feature is not too difficult, but you’d want some kind of generic way to customize sorting behavior. Currently all you can do is provide a custom sort key. But you can not change how the algorithm uses that sort key. You always get items sorted in increasing order by looking at one byte at a time.

When I fall back to std::sort, I re-start sorting from the beginning. As I said above I fall back to std::sort when I have split the input into partitions of less than 128 items. But let’s say that one of those partitions is all the strings starting with “warning:” and one partition is all the strings starting with “error:” then when I fall back to std::sort, I could skip the common prefix. I have the information of how many bytes are already sorted. I suspect that the fact that std::sort has to start over from the beginning is the reason why the lines in the graph for sorting strings are so parallel between ska_sort and std::sort. Making this optimization might make the std::sort fallback much faster.

I might also want to write a function that can either take a comparison function, or an extract_key function. The way it would work is that if you pass a function object that takes two arguments, this uses comparison based sorting, and if you pass a function object that takes one argument, this uses radix sorting. The reason for creating a function like that is that it could be backwards compatible to std::sort.

## Summary

In Summary I have a sorting algorithm that’s faster than std::sort for most inputs. The sorting algorithm is on github and is licensed under the boost license, so give it a try.

I mainly did two things:

1. I optimized the inner loop of in-place radix sort, resulting in the ska_byte_sort algorithm
2. I provide an algorithm, ska_sort, that can perform Radix Sort on arbitrary types or combinations of types

To use it on custom types you need to provide a function that provides a “sort key” to ska_sort, which should be a int, float, bool, vector, string, or a tuple or pair consisting of one of these. The list of supported types is long: Any primitive type will work or anything with operator[], so std::array and std::deque and others will also work.

If sorting of data is critical to your performance (good chance that it is, considering how important sorting is for several other algorithms) you should try this algorithm. It’s fastest when sorting a large number of elements, but even for small collections it’s never slower than std::sort. (because it uses std::sort when the collection is too small)

The main lessons to learn from this are that even “solved” problems like sorting are worth revisiting every once in a while. And it’s always good to learn the basics properly. I didn’t expect to learn anything from an “Introduction to Algorithms” course but I already wrote this algorithm and I’m also tempted to attempt once again to write a faster hashtable.

If you do use this algorithm in your code, let me know how it goes for you. Thanks!